
Miscellaneous Items

Tom Clune
SIVO Fortran 2003 Series

March 11, 2008

3/11/08 I/O Enhancements 2

Logistics
 Materials for this series can be found at

http://modelingguru.nasa.gov/clearspace/docs/DOC-1375
 Contains slides and source code examples.
 Latest materials may only be ready at-the-last-minute.

 Please be courteous:
 Remote attendees should use “*6” to toggle the mute. This

will minimize background noise for other attendees.
 Webex - under investigation

3/11/08 I/O Enhancements 3

Outline
 Computing Environment

 IO seen before
 Count, get

 Array Constructor Syntax
 Module enhancements

 IMPORT Statement
 New attributes

 PROTECTED
 VOLATILE

 Renaming operators
 Changes to intrinsic functions
 Length of names/statements
 Complex constants C = (0.0,pi)
 Support for international character sets

3/11/08 I/O Enhancements 4

Computing Environment
 From the intrinsic module ISO_FORTRAN_ENV
 For the following assume we have launched the executable with

the command line: % foo.x apple 5 z
 COMMAND_ARGUMENT_COUNT()

 Returns integer number of command arguments
 Example command returns 3

 GET_COMMAND([COMMAND,LENGTH,STATUS])
 All INTENT(OUT) and OPTIONAL
 LENGTH - integer # of characters in command
 STATUS - integer (success/failure)
 Results for example command:

 COMMAND=“foo.x apple 5 z”
 LENGTH=15

3/11/08 I/O Enhancements 5

Computing Env (cont’d)
 GET_COMMAND_ARGUMENT(NUMBER[,VALUE,LENGT
H,STATUS])
 NUMBER - selects argument
 VALUE - character, intent(out) value of argument
 LENGTH - number of characters in argument
 STATUS - integer (success/failure)
 Example command yields:

 GET_COMMAND_ARGUMENT(0,VALUE,LENGTH) yields
VALUE=“foo.x”, LENGTH=5

 GET_COMMAND_ARGUMENT(2,VALUE,LENGTH) yields
VALUE=“5”, LENGTH=1

3/11/08 I/O Enhancements 6

Computing Env. (cont’d)
 GET_ENVIRONMENT_VARIABLE(NAME[,VALUE,
LENGTH,STATUS,TRIM_NAME])
 NAME - character, intent(in), name of environment variable
 VALUE - character, intent(out) value of env variable
 LENGTH - number of characters in value - 0 if does not exist
 STATUS - success/fail
 TRIM_NAME - logical, intent(in) for ignoring trailing blanks

3/11/08 I/O Enhancements 7

Environment examples
 Getting command arguments:

use ISO_FORTRAN_ENV
character(len=MAXLEN_ARG) :: arg1, arg2
call get_command_argument(1, VALUE=arg1)
call get_command_argument(2, VALUE=arg2)
read(arg1,’(i)’) nx
read(arg2,’(i)’) ny

 Getting an environment variable:
use ISO_FORTRAN_ENV
character(len=100) :: myShell
call get_environment_variable(‘SHELL’, myShell)

3/11/08 I/O Enhancements 8

Array Constructor Syntax
 Can now use “[“ and “]” rather than “(/”, “/)” to construct

arrays:
x(1:5) = [0.,1.,2.,3.,4.]

 Can also specify type inside constructor
 Follows rules of instrinsic assignment
 Allows type conversion within the constructor
 Convenient for mixing types/kinds/lengths

 Mixed real/integer: x(1:5) = [real :: 0,1.,2.,3,4]
 Mixed string lengths:

names = [character(len=10):: ‘SpongeBob’, ‘Patrick’]
 Also useful for derived types:

list = [myType :: a, b, c]

3/11/08 I/O Enhancements 9

IMPORT Statement
 A common pitfall when using F90/F95 is the declaration of an

interface block than needs to “use” a derived type defined in the
same module:

module foo
 type bar

 integer :: I,J
 end type bar

 interface
 subroutine externFunc(B)

 use foo, only: bar ! Not allowed?
 type (bar) :: B
 end subroutine externFunc
 end interface
 ….

3/11/08 I/O Enhancements 10

IMPORT Statement (cont’d)
 IMPORT is a new statement to address this issue

 Very similar to USE statement
 Specifies all entities in host scoping unit that are accessible

 Use “ONLY” clause to limit selection
 All entities are accessible by default

 Only allowed in an interface body within a module
 Example:

…
 interface

subroutine externFunc(B)
 import foo, only: bar
 type (bar) :: B
 end subroutine externFunc
end interface

3/11/08 I/O Enhancements 11

PROTECTED Attribute
 F2003 introduces the new attribute PROTECTED which provides a

safety mechanism analogous to INTENT(IN)
 Specifies that the variable (or pointer status) may be altered only within the

host module
 Property is recursive. I.e. if a variable of derived type is PROTECTED, all of

its subjobjects also have the attribute
 For pointers, only the association status is protected. The target may be

modified elsewhere.

 Example:

module foo
private ! Good default
real, public :: pi
protected :: pi ! Allow value to be read

 …

3/11/08 I/O Enhancements 12

VOLATILE Attribute
 Introduced for a data object to indicate that its value might be

modified by means external to the program.
 Non standard extensions (e.g. threads)
 Card connected to external lab instrument
 Etc.

 Effect is that the compiler is required to not rely on values in
cache or other temporary memory.
 Can prevent some common optimizations

 If an object has the VOLATILE attribute, so do all of its
subobjects.

 For pointers, attribute refers only to the association status, not
the target.

3/11/08 I/O Enhancements 13

Renaming operators
 F2003 extends the rename capability on USE

statements to include renaming operators that are not
intrinsic operators:
USE MY_MODULE, OPERATOR(.MyAdd.) => OPERATOR(.ADD.)

 This allows .MyAdd. to denote the operator .ADD. accessed
from the module.

3/11/08 I/O Enhancements 14

Changes to Intrinsic Functions
 Argument COUNT_RATE for SYSTEM_CLOCK() can

now be of type real.
 Previously had to convert integer to compute reciprocal to

determine elapsed time
 MAX, MAXLOC, MAXVAL, MIN, MINLOC, MINVAL

have all been extend to apply to type CHARACTER
 ATAN2, LOG, and SQRT have minor changes to take

into account positive/negative zero for vendors that
support the distinction.

3/11/08 I/O Enhancements 15

Lengths of Names/Constants
 Variables may be declared with names of up to 63

characters
 Statements of up to 256 lines are permitted.
 Primarily aimed at supporting automatic code

generation

3/11/08 I/O Enhancements 16

Complex constants
 Named constants may be used to specify real or

imaginary parts of a complex constant:
REAL, PARAMETER :: pi = 3.1415926535897932384
COMPLEX :: C = (0.0,pi)

3/11/08 I/O Enhancements 17

Pitfalls and Best Practices
 Environment

 Use LENGTH keyword to ensure buffers are large enough
 Check status - did the command succeed?

 Use named constants when possible

3/11/08 I/O Enhancements 18

Supported Features

yesnoyesyesnononoCharacter max, min, etc

yesyesyesyesnoyesyesComplex constructor

nononoyesnononoReal clock_rate

noyesyesyesyesyesyesProtected

yes

yes

yes

yes

Gfortran
20070810

yes

yes

yes*

no

Ifort
9.1.049

noyesyesyesyesVolatile

noyesyesyesyesImport

noyes*yesyes*yes*Array Constructor

noyesyesyesyesEnvironment

G95
0.90

pgi
6.2.4

XLF
11.0

NAG
5.1

Ifort 10.1

Feel free to contribute if you have
access to other compilers not
mentioned!

Compiler

3/11/08 I/O Enhancements 19

Resources
 SIVO Fortran 2003 series:

 https://modelingguru.nasa.gov/clearspace/docs/DOC-1390
 Questions to Modeling Guru: https://modelingguru.nasa.gov
 SIVO code examples on Modeling Guru
 Fortran 2003 standard:

http://www.open-std.org/jtc1/sc22/open/n3661.pdf
 John Reid summary:

 ftp://ftp.nag.co.uk/sc22wg5/N1551-N1600/N1579.pdf
 ftp://ftp.nag.co.uk/sc22wg5/N1551-N1600/N1579.ps.gz

 Newsgroups
 http://groups.google.com/group/comp.lang.fortran

 Mailing list
 http://www.jiscmail.ac.uk/lists/comp-fortran-90.html

3/11/08 I/O Enhancements 20

Next Fortran 2003 Session
 Introduction to Object Oriented

Programming for Scientists
 Tom Clune will present
 Tuesday, April 08, 2008
 B28-E210 @ 12:00 noon

